
Miscellaneous Items

Tom Clune
SIVO Fortran 2003 Series

March 11, 2008

3/11/08 I/O Enhancements 2

Logistics
 Materials for this series can be found at

http://modelingguru.nasa.gov/clearspace/docs/DOC-1375
 Contains slides and source code examples.
 Latest materials may only be ready at-the-last-minute.

 Please be courteous:
 Remote attendees should use “*6” to toggle the mute. This

will minimize background noise for other attendees.
 Webex - under investigation

3/11/08 I/O Enhancements 3

Outline
 Computing Environment

 IO seen before
 Count, get

 Array Constructor Syntax
 Module enhancements

 IMPORT Statement
 New attributes

 PROTECTED
 VOLATILE

 Renaming operators
 Changes to intrinsic functions
 Length of names/statements
 Complex constants C = (0.0,pi)
 Support for international character sets

3/11/08 I/O Enhancements 4

Computing Environment
 From the intrinsic module ISO_FORTRAN_ENV
 For the following assume we have launched the executable with

the command line: % foo.x apple 5 z
 COMMAND_ARGUMENT_COUNT()

 Returns integer number of command arguments
 Example command returns 3

 GET_COMMAND([COMMAND,LENGTH,STATUS])
 All INTENT(OUT) and OPTIONAL
 LENGTH - integer # of characters in command
 STATUS - integer (success/failure)
 Results for example command:

 COMMAND=“foo.x apple 5 z”
 LENGTH=15

3/11/08 I/O Enhancements 5

Computing Env (cont’d)
 GET_COMMAND_ARGUMENT(NUMBER[,VALUE,LENGT
H,STATUS])
 NUMBER - selects argument
 VALUE - character, intent(out) value of argument
 LENGTH - number of characters in argument
 STATUS - integer (success/failure)
 Example command yields:

 GET_COMMAND_ARGUMENT(0,VALUE,LENGTH) yields
VALUE=“foo.x”, LENGTH=5

 GET_COMMAND_ARGUMENT(2,VALUE,LENGTH) yields
VALUE=“5”, LENGTH=1

3/11/08 I/O Enhancements 6

Computing Env. (cont’d)
 GET_ENVIRONMENT_VARIABLE(NAME[,VALUE,
LENGTH,STATUS,TRIM_NAME])
 NAME - character, intent(in), name of environment variable
 VALUE - character, intent(out) value of env variable
 LENGTH - number of characters in value - 0 if does not exist
 STATUS - success/fail
 TRIM_NAME - logical, intent(in) for ignoring trailing blanks

3/11/08 I/O Enhancements 7

Environment examples
 Getting command arguments:

use ISO_FORTRAN_ENV
character(len=MAXLEN_ARG) :: arg1, arg2
call get_command_argument(1, VALUE=arg1)
call get_command_argument(2, VALUE=arg2)
read(arg1,’(i)’) nx
read(arg2,’(i)’) ny

 Getting an environment variable:
use ISO_FORTRAN_ENV
character(len=100) :: myShell
call get_environment_variable(‘SHELL’, myShell)

3/11/08 I/O Enhancements 8

Array Constructor Syntax
 Can now use “[“ and “]” rather than “(/”, “/)” to construct

arrays:
x(1:5) = [0.,1.,2.,3.,4.]

 Can also specify type inside constructor
 Follows rules of instrinsic assignment
 Allows type conversion within the constructor
 Convenient for mixing types/kinds/lengths

 Mixed real/integer: x(1:5) = [real :: 0,1.,2.,3,4]
 Mixed string lengths:

names = [character(len=10):: ‘SpongeBob’, ‘Patrick’]
 Also useful for derived types:

list = [myType :: a, b, c]

3/11/08 I/O Enhancements 9

IMPORT Statement
 A common pitfall when using F90/F95 is the declaration of an

interface block than needs to “use” a derived type defined in the
same module:

module foo
 type bar

 integer :: I,J
 end type bar

 interface
 subroutine externFunc(B)

 use foo, only: bar ! Not allowed?
 type (bar) :: B
 end subroutine externFunc
 end interface
 ….

3/11/08 I/O Enhancements 10

IMPORT Statement (cont’d)
 IMPORT is a new statement to address this issue

 Very similar to USE statement
 Specifies all entities in host scoping unit that are accessible

 Use “ONLY” clause to limit selection
 All entities are accessible by default

 Only allowed in an interface body within a module
 Example:

…
 interface

subroutine externFunc(B)
 import foo, only: bar
 type (bar) :: B
 end subroutine externFunc
end interface

3/11/08 I/O Enhancements 11

PROTECTED Attribute
 F2003 introduces the new attribute PROTECTED which provides a

safety mechanism analogous to INTENT(IN)
 Specifies that the variable (or pointer status) may be altered only within the

host module
 Property is recursive. I.e. if a variable of derived type is PROTECTED, all of

its subjobjects also have the attribute
 For pointers, only the association status is protected. The target may be

modified elsewhere.

 Example:

module foo
private ! Good default
real, public :: pi
protected :: pi ! Allow value to be read

 …

3/11/08 I/O Enhancements 12

VOLATILE Attribute
 Introduced for a data object to indicate that its value might be

modified by means external to the program.
 Non standard extensions (e.g. threads)
 Card connected to external lab instrument
 Etc.

 Effect is that the compiler is required to not rely on values in
cache or other temporary memory.
 Can prevent some common optimizations

 If an object has the VOLATILE attribute, so do all of its
subobjects.

 For pointers, attribute refers only to the association status, not
the target.

3/11/08 I/O Enhancements 13

Renaming operators
 F2003 extends the rename capability on USE

statements to include renaming operators that are not
intrinsic operators:
USE MY_MODULE, OPERATOR(.MyAdd.) => OPERATOR(.ADD.)

 This allows .MyAdd. to denote the operator .ADD. accessed
from the module.

3/11/08 I/O Enhancements 14

Changes to Intrinsic Functions
 Argument COUNT_RATE for SYSTEM_CLOCK() can

now be of type real.
 Previously had to convert integer to compute reciprocal to

determine elapsed time
 MAX, MAXLOC, MAXVAL, MIN, MINLOC, MINVAL

have all been extend to apply to type CHARACTER
 ATAN2, LOG, and SQRT have minor changes to take

into account positive/negative zero for vendors that
support the distinction.

3/11/08 I/O Enhancements 15

Lengths of Names/Constants
 Variables may be declared with names of up to 63

characters
 Statements of up to 256 lines are permitted.
 Primarily aimed at supporting automatic code

generation

3/11/08 I/O Enhancements 16

Complex constants
 Named constants may be used to specify real or

imaginary parts of a complex constant:
REAL, PARAMETER :: pi = 3.1415926535897932384
COMPLEX :: C = (0.0,pi)

3/11/08 I/O Enhancements 17

Pitfalls and Best Practices
 Environment

 Use LENGTH keyword to ensure buffers are large enough
 Check status - did the command succeed?

 Use named constants when possible

3/11/08 I/O Enhancements 18

Supported Features

yesnoyesyesnononoCharacter max, min, etc

yesyesyesyesnoyesyesComplex constructor

nononoyesnononoReal clock_rate

noyesyesyesyesyesyesProtected

yes

yes

yes

yes

Gfortran
20070810

yes

yes

yes*

no

Ifort
9.1.049

noyesyesyesyesVolatile

noyesyesyesyesImport

noyes*yesyes*yes*Array Constructor

noyesyesyesyesEnvironment

G95
0.90

pgi
6.2.4

XLF
11.0

NAG
5.1

Ifort 10.1

Feel free to contribute if you have
access to other compilers not
mentioned!

Compiler

3/11/08 I/O Enhancements 19

Resources
 SIVO Fortran 2003 series:

 https://modelingguru.nasa.gov/clearspace/docs/DOC-1390
 Questions to Modeling Guru: https://modelingguru.nasa.gov
 SIVO code examples on Modeling Guru
 Fortran 2003 standard:

http://www.open-std.org/jtc1/sc22/open/n3661.pdf
 John Reid summary:

 ftp://ftp.nag.co.uk/sc22wg5/N1551-N1600/N1579.pdf
 ftp://ftp.nag.co.uk/sc22wg5/N1551-N1600/N1579.ps.gz

 Newsgroups
 http://groups.google.com/group/comp.lang.fortran

 Mailing list
 http://www.jiscmail.ac.uk/lists/comp-fortran-90.html

3/11/08 I/O Enhancements 20

Next Fortran 2003 Session
 Introduction to Object Oriented

Programming for Scientists
 Tom Clune will present
 Tuesday, April 08, 2008
 B28-E210 @ 12:00 noon

